September 26, 2022

M-Dudes

Your Partner in The Digital Era

Multi-qubit entanglement and algorithms on a neutral-atom quantum computer

  • Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gaëtan, A. et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115–118 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Urban, E. et al. Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110–114 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Greenberger, D. M., Horne, M. A. & Zeilinger, A. in Bell’s Theorem, Quantum Theory and Conceptions of the Universe (ed. Kafatos, M.) 69–72 (Springer, 1989).

  • Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).

  • Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534, 516–519 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Figgatt, C. et al. Complete 3-qubit Grover search on a programmable quantum computer. Nat. Commun. 8, 1918 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Harrigan, M. P. et al. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nat. Phys. 17, 332–336 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou, X.-Q., Kalasuwan, P., Ralph, T. C. & O’Brien, J. L. Calculating unknown eigenvalues with a quantum algorithm. Nat. Photonics 7, 223–228 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hauke, P., Cucchietti, F. M., Tagliacozzo, L., Deutsch, I. & Lewenstein, M. Can one trust quantum simulators? Rep. Prog. Phys. 75, 082401 (2012).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Xia, T. et al. Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. Phys. Rev. Lett. 114, 100503 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, Y., Kumar, A., Wu, T.-Y. & Weiss, D. S. Single-qubit gates based on targeted phase shifts in a 3D neutral atom array. Science 352, 1562–1565 (2016).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    PubMed 
    Article 

    Google Scholar
     

  • Graham, T. et al. Rydberg mediated entanglement in a two-dimensional neutral atom qubit array. Phys. Rev. Lett. 123, 230501 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barredo, D., de Leséléuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim, H. et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun. 7, 13317 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gisin, N. & Bechmann-Pasquinucci, H. Bell inequality, Bell states and maximally entangled states for n qubits. Phys. Lett. A 246, 1–6 (1998).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Song, C. et al. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365, 574–577 (2019).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quantum 2, 020343 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saffman, M. & Walker, T. G. Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A 72, 022347 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Carr, A. W. & Saffman, M. Doubly magic optical trapping for Cs atom hyperfine clock transitions. Phys. Rev. Lett. 117, 150801 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Abrams, D. S. & Lloyd, S. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett. 83, 5162–5165 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bravyi, S. B. & Kitaev, A. Y. Fermionic quantum computation. Ann. Phys. 298, 210–226 (2002).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Bravyi, S., Gambetta, J. M., Mezzacapo, A. & Temme, K. Tapering off qubits to simulate fermionic Hamiltonians. Preprint at https://arxiv.org/abs/1701.08213 (2017).

  • Kołos, W., Szalewicz,, K. & Monkhorst, H. J. New Born–Oppenheimer potential energy curve and vibrational energies for the electronic ground state of the hydrogen molecule. J. Chem. Phys. 84, 3278–3283 (1986).

    ADS 
    Article 

    Google Scholar
     

  • Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article 

    Google Scholar
     

  • Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symposium on Foundations of Computer Science 124–134 (IEEE, 1994).

  • Harrow, A. W., Hassidim,, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009).

    ADS 
    MathSciNet 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • O’Brien, T. E., Tarasinski, B. & Terhal, B. M. Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments. New J. Phys. 21, 023022 (2019).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Endo, S., Cai, Z., Benjamin, S. C. & Yuan, X. Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn. 90, 032001 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature https://doi.org/10.1038/s41586-022-04592-6 (2022).

  • Hsiao, Y.-F., Lin, Y.-J. & Chen, Y.-C. Λ-enhanced gray-molasses cooling of cesium atoms on the D2 line. Phys. Rev. A 98, 033419 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gillen-Christandl, K., Gillen, G., Piotrowicz, M. J. & Saffman, M. Comparison of Gaussian and super Gaussian laser beams for addressing atomic qubits. Appl. Phys. B 122, 131 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Gullion, T., Baker, D. B. & Conradi, M. S. New, compensated Carr-Purcell sequences. J. Magn. Reson. 89, 479–484 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • Kuhr, S. et al. Analysis of dephasing mechanisms in a standing-wave dipole trap. Phys. Rev. A 72, 023406 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Robicheaux, F., Graham, T. & Saffman, M. Photon-recoil and laser-focusing limits to Rydberg gate fidelity. Phys. Rev. A 103, 022424 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Saffman, M., Beterov, I. I., Dalal, A., Paez, E. J. & Sanders, B. C. Symmetric Rydberg controlled-Z gates with adiabatic pulses. Phys. Rev. A 101, 062309 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, S., Robicheaux, F. & Saffman, M. Magic wavelength optical traps for Rydberg atoms. Phys. Rev. A 84, 043408 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar