September 28, 2022

M-Dudes

Your Partner in The Digital Era

Unbiasing fermionic quantum Monte Carlo with a quantum computer

  • Friesner, R. A. Ab initio quantum chemistry: methodology and applications. Proc. Natl Acad. Sci. USA 102, 6648–6653 (2005).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Helgaker, T., Klopper, W. & Tew, D. P. Quantitative quantum chemistry. Mol. Phys. 106, 2107–2143 (2008).

    CAS 
    ADS 

    Google Scholar
     

  • Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Bauer, B., Bravyi, S., Motta, M. & Kin-Lic Chan, G. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 120, 12685–12717 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Acioli, P. H. Review of quantum Monte Carlo methods and their applications. J. Mol. Struct. THEOCHEM 394, 75–85 (1997).

    CAS 

    Google Scholar
     

  • Foulkes, W. M. C., Mitas, L., Needs, R. J. & Rajagopal, G. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 33 (2001).

    CAS 
    ADS 

    Google Scholar
     

  • Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18, 23023 (2016).

    MATH 

    Google Scholar
     

  • Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    MathSciNet 

    Google Scholar
     

  • Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Shor, P. W. in Proc. 37th Conf. on Foundations of Computer Science 56–65 (IEEE Comput. Soc. Press, 1996).

  • Preskill, J. Quantum computing and the entanglement frontier. Preprint at https://arxiv.org/abs/1203.5813 (2012).

  • McArdle, S. et al. Variational ansatzbased quantum simulation of imaginary time evolution. npj Quantum Inf. 5, 75 (2019).

    ADS 

    Google Scholar
     

  • Motta, M. et al. Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16, 205–210 (2020).

    CAS 

    Google Scholar
     

  • Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Nam, Y. et al. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. npj Quantum Inf. 6, 33 (2020).

    ADS 

    Google Scholar
     

  • Google AI Quantum et al. Hartree-Fock on a superconducting qubit quantum computer. Science 369, 1084–1089 (2020).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Troyer, M. & Wiese, U.-J. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005).

    PubMed 
    ADS 

    Google Scholar
     

  • Blankenbecler, R., Scalapino, D. J. & Sugar, R. L. Monte Carlo calculations of coupled boson-fermion systems. I. Phys. Rev. D 24, 2278–2286 (1981).

    CAS 
    ADS 

    Google Scholar
     

  • Chang, C.-C., Gogolenko, S., Perez, J., Bai, Z. & Scalettar, R. T. Recent advances in determinant quantum Monte Carlo. Philos. Mag. 95, 1260–1281 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • Mahajan, A. & Sharma, S. Taming the sign problem in auxiliary-field quantum Monte Carlo using accurate wave functions. J. Chem. Theory Comput. 17, 4786–4798 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z.-X. & Yao, H. Sign-problem-free fermionic quantum Monte Carlo: developments and applications. Annu. Rev. Condens. Matter Phys. 10, 337–356 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • Moskowitz, J. W., Schmidt, K. E., Lee, M. A. & Kalos, M. H. A new look at correlation energy in atomic and molecular systems. II. The application of the Green’s function Monte Carlo method to LiH. J. Chem. Phys. 77, 349–355 (1982).

    CAS 
    ADS 

    Google Scholar
     

  • Zhang, S., Carlson, J. & Gubernatis, J. E. Constrained path Monte Carlo method for fermion ground states. Phys. Rev. B 55, 7464 (1997).

    CAS 
    ADS 

    Google Scholar
     

  • Zhang, S. & Krakauer, H. Quantum Monte Carlo method using phase-free random walks with Slater determinants. Phys. Rev. Lett. 90, 136401 (2003).

    PubMed 
    ADS 

    Google Scholar
     

  • Sorella, S. Linearized auxiliary fields Monte Carlo technique: efficient sampling of the fermion sign. Phys. Rev. B 84, 241110 (2011).

    ADS 

    Google Scholar
     

  • Becca, F. & Sorella, S. Quantum Monte Carlo Approaches for Correlated Systems (Cambridge Univ. Press, 2017).

  • Bartlett, R. J., Kucharski, S. A. & Noga, J. Alternative coupled-cluster ansätze II. The unitary coupled-cluster method. Chem. Phys. Lett. 155, 133–140 (1989).

    CAS 
    ADS 

    Google Scholar
     

  • Ryabinkin, I. G., Yen, T.-C., Genin, S. N. & Izmaylov, A. F. Qubit coupled cluster method: a systematic approach to quantum chemistry on a quantum computer. J. Chem. Theory Comput. 14, 6317–6326 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz, G., Gubernatis, J. E., Knill, E. & Laamme, R. Quantum algorithms for fermionic simulations. Phys. Rev. A 64, 022319 (2001).

    ADS 

    Google Scholar
     

  • Evenbly, G. & Vidal, G. Tensor network renormalization yields the multiscale entanglement renormalization ansatz. Phys. Rev. Lett. 115, 200401 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Goddard, W. A., Dunning, T. H., Hunt, W. J. & Hay, P. J. Generalized valence bond description of bonding in low-lying states of molecules. Acc. Chem. Res. 6, 368–376 (1973).

    CAS 

    Google Scholar
     

  • Cullen, J. Generalized valence bond solutions from a constrained coupled cluster method. Chem. Phys. 202, 217–229 (1996).

    CAS 

    Google Scholar
     

  • Paldus, J., Piecuch, P., Pylypow, L. & Jeziorski, B. Application of Hilbert-space coupled-cluster theory to simple (H2)2 model systems: planar models. Phys. Rev. A 47, 2738–2782 (1993).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lee, J., Huggins, W. J., Head-Gordon, M. & Birgitta Whaley, K. Generalized unitary coupled cluster wave functions for quantum computation. J. Chem. Theory Comput. 15, 311–324 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Hehre, W. J., Stewart, R. F. & Pople, J. A. Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys. 51, 2657–2664 (1969).

    CAS 
    ADS 

    Google Scholar
     

  • Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    CAS 
    ADS 

    Google Scholar
     

  • Raghavachari, K., Trucks, G. W., Pople, J. A. & Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157, 479–483 (1989).

    CAS 
    ADS 

    Google Scholar
     

  • Takeshita, T. et al. Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Phys. Rev. X 10, 011004 (2020).

  • Siegbahn, P. E. M. The externally contracted CI method applied to N2. Int. J. Quantum Chem. 23, 1869–1889 (1983).

    CAS 

    Google Scholar
     

  • VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    PubMed 
    ADS 

    Google Scholar
     

  • Yang, Y., Lu, B.-N. & Li, Y. Accelerated quantum Monte Carlo with mitigated error on noisy quantum computer. PRX Quantum 2, 040361 (2021).

  • Aaronson, S. Shadow tomography of quantum states. SIAM J. Comput. 49, STOC18-368–STOC18-394 (2020).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from very few measurements. Nat. Phys. 16, 1050–1057 (2020).

    CAS 

    Google Scholar
     

  • Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Williams, K. T. et al. Direct comparison of many-body methods for realistic electronic hamiltonians. Phys. Rev. 10, 011041 (2020).

    CAS 

    Google Scholar
     

  • Chen, Z. et al. Exponential suppression of bit or phase errors with cyclic error correction. Nature 595, 383–387 (2021).


    Google Scholar
     

  • Epifanovsky, E. et al. Software for the frontiers of quantum chemistry: an overview of developments in the Q-Chem 5 package. J. Chem. Phys. 155, 084801 (2021).